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SINGULAR DIFFERENTIAL OPERATORS 
A N D  DISTRIBUTIONS 

BY 

S. LEIF SVENSSON 

ABSTRAC'F 

Differential operators p(t ,  O)= am (t )a m + . . .  + ao(t ), where a~ has a zero of 
finite order at t = 0, are studied as operators on the distribution spaces ~ '(R) 
and ~'(R). In particular the kernel of p, operating on ~'(R ), is studied in detail 
by use of asymptotic analysis and a simple formula for its dimension is given. A 
continuous right inverse for p on ~'(R) is constructed. Necessary and sufficient 
conditions for this inverse to be two-sided are given. Extensions are made to the 
spaces ~g(R) and ~'(R). Finally some features for operators with more than one 
singular point are briefly discussed and there is noted a phenomenon - -  forced 
propagation of supports - -  which has important consequences in higher 
dimensions as a forced propagation of singularities. 

O. Introduction 

Different ial  opera tors  

(0.1) p ( t ,  O)  = a , , ( t ) O  m + . . .  + ao ( t )*  

with smooth  coefficients and  where  t = 0 is a zero of finite order  for a,, have 

been  studied by Malgrange  [5] mainly  from the formal  point  of view. Cons idered  

as a formal  differential  opera tor  working  on formal  power  series expans ions  at 

t = 0, p is of finite index which is easily computed .  The  paper  of Malgrange  also 

conta ins  some results on the equa t ion  p u  = v when u and  v are germs of 

d is t r ibut ions  at t = 0, no tab ly  solvabili ty of the equat ion .  The  index theo rem has 

also been  discussed by Komat su  [4]. Hypoel l ipt ic i ty  of opera tors  (0.1) has been  

discussed by K a n n a i  [3]. In  the sequel  we shall make  the a d d i t i o n a l  a s s u m p t i o n  

that,  unless otherwise stated, the coefficient a,, only vanishes at t - -0 .  This  is 

done  in  order  no t  to have to make  local versions of all s ta tements .  

* O = O/Ot. 
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The present study is aimed at discussing in detail the kernel of p as an 

operator on 9 ' =  ~ ' (R) .  This kernel is, not surprisingly, of finite dimension. 

Hence, knowing the looks of the kernel, all information regarding p as an 

operator on distribution spaces is easily obtainable. By using asymptotic 

expansions (sections 1 and 2) we prove in section 3 a theorem (3.1) which 

completely characterizes ker~, p and then construct (Theorem 3.2) a continuous 

right inverse for p on 9 ' .  This inverse is sometimes a twosided inverse- - indeed 

a remarkable thing for a differential operator. Hence e.g. p = t3t9 + 1 defines a 

homeomorphism on 9 ' .  Corresponding results are valid for the spaces ~ and ~ '  

(Theorem 3.3 and Theorem 4.2). When there are more than one singular point 

one might lose the solvability property (Example 5.2), but also encounter new 

examples of invertibility. One example is p = cos 2 td  - 1, which is invertible on 

Operators such as (0.1) offer striking examples of the great differences 

between using hyperfunction or distribution spaces. The reason for the state- 

ments on invertibility, as well as for the theorem on hypoellipticity by Kannai, is 

that classical (singular) solutions either behave fairly nicely or else are so bad 

that they are not even distributions. Fortunately enough one can do very well 

without the latter type of solutions to construct solutions of p u  = v in 9 ' .  

The most important aspect in considering operators of the type (0.1) is that 

such operators, though generally depending upon parameters, appear in many 

cases as localizations of higher order partial differential operators. Hence this 
paper may be seen as the initial part of a study of degenerating (i.e. not of 

principal type) partial differential operators. 

1. The formal analysis 

We introduce the class ~: of formal series expansions 

N 

(1.1) ] ( t ) =  e°"'t °. ~ bv(t)(loglt 1) v. 
v=O 

Here Q is a complex polynomial in t -1/q for some positive integer q, vanishing 

when t -1/q = 0. We recall that Q is called the determining factor of ]. Further v 

is a complex number (the index of )7), b0 ,"  ",/~N are all power series expansions 

in t TM and at least one /~  has a nonvanishing constant term. Subsets of ~: are 

the space of formal Puiseux series expansions - -  and ~ - -  the space of formal 

power series expansions. 
Without going into formalities or aiming at completeness we note some simple 

facts concerning ~. Two elements in ~: are equal if and only if they have the 
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same q, v, N, Q, and/?0," • ",/~N. E lements  in ~ may be formally multiplied and, 

in case of c o m m o n  determining factors and indices differing at most  by a rat ional  

number ,  added.  In .~ we in t roduce  in the obvious way a formal  different iat ion 

(Ot ~ = at =-~, 0 log[ t I=  t -~, c~e ° = (SQ)e  ° etc.). Given  e lements  t i0 , . . . ,  ti,. in 

with fir, ~ 0, we in t roduce  the formal  differential  ope ra to r  

/~(t, 0) = a , ,0"  + . . .  + ti0. 

T h e  formal  t ranspose of /~ is defined by 

'if(t, c{)y = ( -  1)'c{~ (fim~) + . - -  + ~o~. 

We write 

/St = = t "-~(~)" i n d o ( a ) +  E, 

where,  for  the index v(E) of  E, v ( E ) > o ~ - X ( 1 6 ) .  He re  indo is the indicial 

polynomial  of  /~, a polynomial  of  degree  p ~ ) .  Some more  or  less obvious 

proper t ies  of /~  are col lected in a lemma. 

LEMMA 1.1. With ~ as above one has 

(a) X(P) = maxj (j - v(fii)), 

(b) p(f i)  = max{j  : j  - v(tij) = X(16)}, 

(c) x( 'O) = x(#) ,  0('O) = p(#),  
(d) ind, 0 ( a )  = ind 0 (X(#) - 1 - oz). 

PROOF. If dj = a J ° % ) +  hot (higher o rder  terms),  one  has 

~jOJt ~ = a, oot(a - 1 ) - - - ( a  - j  + 1)t ~%)+~-j + hot.  

H e n c e  (a) follows immediately.  Let  J = {j : ]  - v ( f i , )=  X(/5)}. Then  

p t ~ = ( ~ j a ,  o a ( O t - 1 ) . . . ( a - j +  1))  t ~ - x " ' +  hot,  

and (b) follows. Fur ther ,  one  has (-1)JSJ(t~it~) = (-1)Ja~oO~t°% )+~ + h o t  and 

hence  

'0t ~ = ~ a jo ( -  1)J0it °%)÷~ + hot 
iEJ 

= ~ ajo( - ly0Jt  '+~-x(~) + hot 

= t ~-x(p) • ind~ (X (/5) - 1 - a )  + hot.  

H e n c e  (c) and (d) follow. T h e r e b y  the proof  is concluded.  
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We introduce a formal integration .~ on #: by putting 

c f t~÷l(l°gltl) k - k  f tV(l°gltl)k-l/( v + 1), v #  - 1 ,  

J tV(l°gltl)k = 1 (logltl)k+l/(k +1) if v = - 1 .  

Extending .~ by linearity it only remains to define .~ ~ when ~ = e °)7, where 67 is a 

nonvanishing determining factor and where ~ has a vanishing determining 

factor. In that case we put 

f e°")~(t) = ~ e ° " ) ( -  ly(c{67)-l~,~(t), 
j=0 

where fy = d'((c{Q)-~37). Since Q is a nonconstant polynomial in t -~/q for some 

positive integer q, the operator f increases index by at least 1/q and hence the 

infinite sum defines an element in 4. It should be observed that while c~ ~ equals 

the identity operator on #:, 37 - .~ 537 equals the coefficient of t o in the expansion 

of 37. 
It should be noted that given a formal differential operator #, there always 

exists a formal fundamental set 371,. •., ~,~ of elements in # for/~. Thus/~Ys = 0, 

j = 1,. •., m, and the formal Wronskian Det(~J~k) is a nonvanishing element in 

#:. For the general proof we refer to Cope [2] and for the construction to Sirovich 

[6]. It is noteworthy that in the definition (1.1) applied to 9j we may take q = 0 if 

67 vanishes. Another fact of importance is that the number of solutions in a 
formal fundamental set with vanishing determining factor equals the degree p (15) 

of the indicial equation. 
We shall have use for the index theorem by Malgrange [5], Komatsu [3] 

concerning formal operators /5 with coefficients from ~: Considered as an 

operator on ~, p is of finite index equal to X~) .  

2. Asymptotic expansions 

After the formal analysis of section 1, this section is devoted to the 

investigation and establishment of asymptotic expansions of certain classes of 

functions. Also some classes of distributions, defined by aid of expansions, will 

be discussed. 
In the sequel, the functions t ~ and log lt ] will be considered and so will 

truncations of expansions in ,.~. We shall not make any notational distinction 

between those functions and their formal counterparts, since the meaning will 

always be obvious. For the function t ~ we choose once and for all some fixed 

branch e.g. the principal branch. 
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Assume that y E C=(R \{0}) and let )7 E ~. We write, in the prevailing way of 

notation, 

(2.1) y - )7 when t---~0 

to denote  that there is a sequence {c, }i such that c, ---* oo when n ~ ~ and such 

that for every n 

(2.2) e-°( ' ) (Y( t )  - )7-(0) = O( tc , )  when t ----~ 0. 

Here  Q is the determining factor of )7 and )7, is the truncation of )7 after the first 

n terms. When o- is either of + 1 or - 1 we write y - )7 when t ~ 0, sgn(t) = tr to 

denote that (2.2) is valid when sgn(t) = tr. The class ~ ( ~ )  is defined to consist 

of all functions y which are infinitely smooth for t ~  0 (sgn(t) = tr) and which are 

such that for some ) 7 ~ ,  ~gJy-SJ)7 when t---~0 ( sgn( t )= t r )  for all j =  

0, 1, 2,. • .. The expansions )7 are not uniquely determined by the corresponding 

y : s, unless we require the expansions to be, if possible, nonvanishing. This will 

be taken as a convention for the remainder of the paper. 

Let y, z belong to ~ ( ~ )  and let )7, ~ be corresponding expansions in ~. Then 

it is clear that ay and yz belong to ~ ( ~ )  with expansions ~)7 and )72 

respectively. If, moreover,  )7 and ~ have the same determining factor and indices 

differing only by a rational number, it follows that y + z  is in ~: with 

corresponding expansion )7 + ~. A simple but very useful observation is that a 

function y in :T is in C~(R ) if and only if it admits a power series expansion )7. 

The properties of integrals of elements in ~ are discussed in the following two 

lemmas. 

LEMMA 2.1. Let  y be integrable on sgn(t) = (7, let Q be a determining factor, 

and assume that y ( t ) =  O ( t  ~ ) when t---~O, sgn( t )=  o' for  some A > - 1. Then 

(2.3) e -°(') e°( ' )y (s )ds  = O ( #  ÷1) when t---~O, sgn( t )=  o-, 

where sgn (a )= o -  in case R e Q ( t ) - - - ~  when t---~O, sgn(t)=cr ,  and a = 0  

otherwise. 

PROOF. We assume that or = 1. Consider first the case when Re Q(t)---~ oo 

when t --~ 0, t > 0. Since Q is a polynomial in t 1/~ for some positive integer q, it 

follows that Re Q is strictly decreasing when t is small and positive and even that 

e x p ( -  Re Q( t ) )  and exp(Re Q ( 2 t ) -  Re Q ( t ) )  both tend to zero faster than any 

power of t when t --~ 0, t > 0. We split the integral of (2.3) into three parts and 

estimate for ~ sufficiently small each part in the following way: 
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If. I e x p ( Q ( s ) -  Q(t ) )y ( s )ds  <- C x e x p ( -  Re Q(t)) ,  

exp(O(s) Q(t))y(s)ds[ <= C 2 e x p ( R e Q ( 2 t )  ReQ( t ) ) ,  

t ft2t 

Hence each part is O(t  ~÷~) when t---~ 0, t >0 .  In case Re O( t )  remains bounded 

from above as t--~0, (2.3) follows immediately with a = 0. This remark 

concludes the proof. 

LEMMA 2.2. Let y E 3;~ and let ~ be a corre'sponding, if possible nonvanishing, 

expansion in #.  Let a be a real number with sgn(a) = ~r. Then there is a number 

c~.y such that the function 

is in 3;~ and such that 

t ---, f '  y (s)ds - co.y 

f f (2.4) y ( s )ds -ca .y  ~ ~ when t--*O, sgn( t )= or. 

In case the determining [actor Q of ~ is such that ReO(t)--*0o when t---*0, 

sgn(t) = o-, we may choose ca., = O. Otherwise c~.y is uniquely determined by a and 

y. 

PROOF. We assume that ~r = 1. First it should be observed that in case the 

determining factor Q of y vanishes, the expansion (2.4) is a consequence of the 

construction of the finite part integral of Hadamard:  

c,., = f.p. y(s)ds.  

We omit the details of proof in this well known case. In case O does not vanish, 

we observe that it is no restriction to assume that the interval of integration in 

(2.4) is so small that aO never vanishes in it. Then the operator  tr = - (~90)-1a is 

defined on the interval of integration, 're o = _ e o, and, furthermore, if'we write 

y = e°z,  where z ( t ) =  O(t  ~) when t - * 0 ,  t > 0 ,  it follows that 

(2.5) r z ( t )=  O( t  ~*l/q) when t---~0, t > 0 ,  
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where q is some positive integer and r the transpose of 'r. (Cf. the discussion 

following the definition of .~.) Further, it is no restriction to assume that y 

vanishes near a. In case Re Q(t)--~oo when t---~0, t > 0 ,  integration by parts 

yields (observe that y vanishes near a),  if we again write y = e°z,  

fo' e°<~'z(s)ds = ~ e°")( - l~(O0(t))-~r'z(t) 
/=0 

(2.6) 
+ ( -  1) "+~ eO"~r"+lz(s)ds. 

Comparing (2.6) to the result of Lemma 2.1 and the definition of .f we see that 

(2.4) follows with c,.y = 0. In case Re O is bounded from above for small positive 

t, integration by parts still yields (2.6). However,  for n sufficiently large, e°r"+~z 
will be integrable on the interval [0, a] and 

f f  e°<~)r"+~z(s)ds = f f  e°<S)r"+tz(s)ds + fo' e°°)r"+~z(s)ds. 

In the last integral we may continue integrating by parts as in (2.6), now with 

a = 0, and hence the result follows. The uniqueness result for ca, y is immediate. 

In view of Lemma 2.2 it makes sense to define, following the classical finite 

part terminology by Hadamard,  

(2.7) c,,,y = f.p. f f  y(s)ds. 

Here  we assume, of course, that ca.y is chosen to be zero if Re Q(t)--~o0 when 

t --~ 0, sgn(t) = sgn(a), and we assume y to be nonvanishing if possible. In (2.7) a 

may take infinite values as well as finite. We also define 

f.p. y(s)ds = f.p. y(s)ds + f.p. ® y(s)ds 

and extend the definition to cases when the singular point is not necessarily t = 0 

and where there are more than one singular point, in ways that are obvious. 

If y E ~÷~, the finite part integral 

f.p. fo= y(s)ck(s)ds, 

where 4' is a test function, either vanishes for any choice of ~, or else defines a 

distribution (cf. Lemma 2.2) which uniquely defines y for t > 0 and hence may be 
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identified with Hy, where H is the Heaviside function. In the same way (1 - H)y  

and y may, under proper circumstances, be defined as distributions. 

Before discussing derivatives of distributions Hy, defined above, it is conven- 

ient to introduce still another class of distributions, or, rather, new notations for 

an old class of distributions. If y E ~ we define the distribution ySo by 

f 0  if ~ has nonvanishing determining factor, 
(2.8) (y&)(4,) l the coefficient of t o in 376 otherwise. 

Here 8o denotes the Dirac measure at the origin and the reason for the notation 

is, of course, that if y E C ~ then ySo retains its meaning as the product of a 

smooth function and a distribution. Clearly, a necessary condition in order that 

ySo should not vanish is that ~ has a vanishing determining factor and 

nonpositive rational index. The distribution ySo has its support at t = 0 and, 

conversely, any distribution with support at t = 0 may be represented as a 

distribution (2.8) since a simple computation yields 

(t-')8o = ( ( -  1)J/j!)8°O), / >=0. 

If $ E C = then 

(2.10) 

A simple computation yields 

(2.11) 

and hence 

(2.12) 

0(y8o) = ($y)8o. 

3 (ySo) = ((t3 - t-')y)80, 

((ty)80) = (t~y)80. 

From (2.10) and (2.12) it follows that for any smooth differential operator p 

(2.13) p((ty)8o) = (tpy)8o. 

We observe, recalling the remark following the definition of L that 

(2.14) (ySo)(~b) = ~q~ - ~ - f c{(~q~). 

When differentiating distributions defined by finite part integrals it is convenient 

to introduce an operator S working on differential operators and being defined 

by 

(2.15) S(p)y = p (logl t I • y) - log lt I • py. 
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Hence S(p)  is the commutator  of p and (multiplication by) log lt I i.e. a 

differential operator  of order  one less than p. It follows directly that 

(2.I6) S ( a ) = 0  if a is a function, S ( a ) = t  -z, 

(2.17) S(rq)  = S(r)q + rS(q) i[ r, q are differential operators. 

Defining 

(2.18) S°(p) = p, S"+'(p) = S(S" (p ) )  if n -> 0 

one gets, by induction over n, 

(2.19) 

and 

(2.20) tS"+'(O;+')=(n+l)S '(O')+tOS"÷~(Oi) ,  n>-O, j>=O. 

Now we are prepared for discussing derivatives of finite part integrals. 

LEMMA 2.3. Let y E ~. Then, in the sense o[ distributions 

(2.21) p ( n y ( l o g l t l )  ") = np (y ( log l t [ ) " )+  (n + 1)-'(tS"+'(p)y)a0 

for any n >= 0 and any smooth linear differential operator p. 

PROOF. Obviously it suffices to prove (2.21) when p = 0 j, so we proceed by 

induction after j. For j = 0 the whole matter is trivial. To prove (2.21) when p = 0 

we note that for z E 

( zO4)dt - f.p. za~bdt ~ J £5~b 

or, integrating by parts, 

However,  we have 

(2.24) 
° 

(Oz) bdt-f.p.f. (Oz)Odt f 
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Addi t ion  of (2.23) and (2.24) yields 

i o  0 ~ . 
( t )~b ( t ) - f . p .  zo ,at-f.p, fo ( a z ) ~ d t -  f a(~.,~). z 

H ere  the right m e m b e r  is, by (2.14), zd~ -ZSo(~b) and hence  

L f: (2.25) - f.p. zO4~dt = f.p. (Oz)4~dt + z8o(4~). 

Lett ing z = y (log l t I)" we see that the last te rm of (2.25) vanishes unless n = 0 in 

which case 

ZSo = ySo = ( t t - 'y)8o = (tS(O)y)~o. 

Hence  (2.21) follows for  the case p = a. For  the step of induction we have,  

employing (2.12), 

(2.26) O/+'(Hy(logltl) ") = d(nai (y( logl t l )  ") + (n + 1)-'(tOS"+'(O')y)8o. 

Recalling (2.19) and using the result for  j = 1 we get 

O(HO' (y(logl t l)") 

Taking (2.16) into considerat ion we now get 

O(HO~ (y(loglt l) ") = HO'+'(y(logl t l)" ) + (S"(O')y )~.. 

H e n c e  (2.26) reads 

OJ+'gy(logltl)" 

= Ha'+1(y (Iog l t I)") + ((n + 1)S" (O t ) + tOS" +~(O' )) (n + 1)-Iy80. 

Employing, finally, (2.20) we get (2.21) for p = O j÷1 and hence the lemma is 

proved. 

Given a linear differential operator p of type (0.1) we may form a correspond- 

ing formal differential operator/5 just by performing the Taylor series expansion 

of the coefficients. We recall the classical method, introduced by G. D. Birkhoff 

[1], of proving, for a given formal fundamental set )~,, • •., :,~ for p, the existence 

of a fundamental set yl, • •., ym for p, such that each y/E ~ and y/- )~j when 

t ---> O. This me thod  relies upon the solution of singular integral equat ions  by aid 
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of simple estimates as the one given in Lemma 2.1 above. The real case treated 

here is actually simpler than the complex case which is usually considered, and 

corresponds simply to the integration along rays in the complex case. Depen-  

dence upon parameters may be considered too but then one runs into the same 

kind of problems of uniformization as in the complex case. We do not go into 

any details here but accept the fact that for a given formal fundamental set 

Y~,'" ", 9,, we may always find a corresponding fundamental set for p. 

We finish off this section by a simple uniqueness result. 

LEMMA 2.4. Let  y 1,'" ", y,, be a fundamen ta l  set in ~ for the operator p such 

that Yz, " " ", 9,, is a formal  f undame n t a l  set for p. A s s u m e  that 91, " " ", Ym contains a 

basis for the set o f  formal  power series solutions o f  O9 = O. Then any C=-solution y 

o f  py = 0 is, for t > O, a linear combination of  those y~ : s for which either the 

determining factor Oy, is such that Re Oyj (t)---~ - ~ when t ~ O, t > O, or else 9J is 

a power series expansion. 

P~OOF. We have for t > O, y = Ej c~yj and hence 

(2.27) cj = E ajkO ~y, 
k 

where (ajk) is the inverse of the Wronskian matrix (0Jyk). Computing determin- 

ing factors and indices we get Qa,~ = - Qyj and v (ark) = v (yj) (modulo a rational 

number). Hence the right member  of (2.27) is in .~ with determining factor 

Qy - Qy, and index v ( y ) -  v(yj) (modulo a rational number). Since y is assumed 

to be smooth and the left member  of (2.27) is a constant it follows that either 

Re Qy, (t)  ~ - oo when t --0 0, t > 0, or Qy, = 0 and v (yj) is a rational number, or 

c~ = 0. For the case when Qy, = 0 and v (yj) is rational, finally we observe that 

solutions of py = 0 with vanishing determining factor and rational index form a 

linear space and that solutions admitting power series expansions form a linear 

subspace of this space. 

3. The operator p on distribution spaces 

We shall study the behaviour of a smooth linear differential operator  p of type 

(0.1) with the highest order coefficient am having a zero of finite order  at t = O, 

working on the space ~ ' ( R )  of distributions on R. In order to do that we 

consider the transposed equation 

(3.1) 'p~b = 0, 0 E @(R). 
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Clearly,  the only candidate  for  a solution ~b of (3.1) in @ ( R y  is given by 

(3.2) ~b(t) = ~ y,(t) f' zj(s)¢(s)ds when s g n ( t ) =  o-. 
j = l  Jfr.~ 

In (3.2) yl," • ", y,, is a fundamen ta l  set of solut ions of 'py = 0 and z l , . . . ,  z,. are 

the solut ions of the sys tem 

(0 yj)zj = tS,,,,_~a m'( i = 0 , . . . ,  m - 1. (3.3) ' - 1)%" 
j = l  

Clearly,  the funct ion defined by (3.2) has compac t  suppor t  and is infinitely 

different iable  for  t / 0 .  Consequen t ly  the condit ion for  q~ to be long  to ~ ( R )  is 

that  ~b admi ts  a fo rmal  power  series expansion at t = 0. W e  shall see that  this is 

equiva len t  to a finite n u m b e r  of condit ions,  each expressible  in te rms  of 

distr ibutions,  upon  ~b. We  choose  y 1, " • ", y,, in such a way that  each yj E .~ and 

admi ts  an expans ion  )Tj, where  )~1, • • ", ~,, is a fo rmal  fundamen ta l  set for  'P- We  

may  also, wi thout  restrictions, assume that  a subset  of {17~,..., )7.,} forms  a basis 

for  the space of fo rmal  power  series solut ions of t~)7 = 0. Consider ing the set 

z~ , . - . ,  zm defined by (3.3) it is immedia te ly  seen that  

(a) z , - - - ,  z,, is a fundamen ta l  set for  p, 
(b) each zj E .~ and ~ , -  •., ~,, is a formal  fundamen ta l  set for/5,  

(c) for  de te rmin ing  factors  and indices one  has ( f rom solving (3.3) by C r a m e r ' s  

rule) 

Q z j  = - Qyi, 1) (yj) + v (zi) is a ra t ional  number .  

W e  in t roduce  

A,~ = {] : Re  Qy~ ~ - ~ when t ~ 0, sgn (t) = o'}, 

B,r = {j : j ~ A~, and either Or, ~ 0 or Qy, = 0 and v (y~) ~ Q}, 

C = {j : Qyj = 0 and v (yj) is rational}, 

D = {] : yj admits  a nonvanishing power  series expansion}. 

By L e m m a  2.3, H,,zj, where  H~(t)= H(~rt) and H is the Heavis ide  function,  

be longs  to the kernel  ker~,p  of p in 5~ ' (R) when j E B~. H e n c e  a necessary 

condit ion for solvabili ty of (3.1) is 

f: (3.4) f.p. zj(s)O(s)ds = 0 when j E B~. 

' ~ ( R ) =  Co(R). 
tt 8~, i is the Kronecker  delta. 
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From (3.2) and (3.4) we get for sgn(t)= tr 

4 ' (0 = ~ yj(t) z,(s)O(s)ds + ~. yj(t) 
j E A , ,  ~ j fF-Bo LgC 

(3.5) 

z;(s)¢(s)ds 

- f 'P"  fi'-~ zi(s)~b(s)ds) + ~c yi(t)(f .p,  f~' zi(s)tp(s)ds). 

By Lemma 2.2 and the definition of f.p. (2.7), the first two sums in the right 

member of (3.5) are in ~ and furthermore, by (c) above, they have expansions 

with vanishing determining factors and rational indices, something which by 

definition is true also for the last sum of (3.5). Hence it follows that 4' E ~ and 

(3.6) f ( ) q~ = ~ )~, 2id) + ,~cE )3, f.p. z,(s)dJ(s)ds . 

Here we observe that the first sum of the right member of (3.6) is an element in 
with coefficients that are linear combinations of expressions u (tk), where the u : s 

are distributions with support at t = 0. Hence, comparing (3.6) to a power series 

expansion we get two more sets of conditions for solvability of (3.1), namely 

f.p. zi(s)~b(s)ds + u(O) = 0 

(3.7) 
for some distribution u with support at t = O, j ~ C\D 

and, denoting by ~p the space of distributions u with support at t = 0 and with 

pu = O, 

(3.8) u(~b) = 0 when u E ~p. 

Clearly, ~p may be identified with the kernel of/~, considered as an operator on 
(Y'--the dual space of C. Returning to (3.6) we see that, (3.7) and (3.8) being 

satisfied, the right member defines for each tr a power series expansion. 
Matching the two expansions we get a final set of conditions 

(3.9) f.p. f ~  z;(s)~b(s)ds = 0 when j E D. 

To sum up we have found the following set of elements in the kernel of p in 

@'(R) by aid of conditions for solvability of (3.1) 

(i) H~zj for j EBo  

(ii) H~zj+u for j E C \ D  (where supp u; = O) 
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(iii) zj for j E D 

(iv) the elements in ~p. 

Since the conditions obtained above are both necessary and sufficient for 

solvability of (3.1) in ~ (R), it follows that the elements (i)--(iv) span the kernel of 

p in ~ ' (R) .  Consequently this kernel has a finite dimension which we shall 

compute. We observe that for each yj with determining factor zero there are two 

solutions (of type (i) or (ii)) except when yj admits a nonvanishing power series 

expansion in which case there is only one contribution (of type (iii)). The number 

of y j : s  of this last type equals the dimension of ker~`6. Further there are 

contributions from the elements in Zep, but by an earlier remark it follows that 

the dimension of ~p equals that of kere.'`6 i.e. the codimension of the image of `6 

in d. Denote by n~ the number of couples (o-,j), where tr = __+ 1 and where 

Re Q(t)  is bounded from above when sgn(t)= tr if Q is the nonvanishing 
determining factor of £j. Clearly this definition is independent of the particular 

choice of formal fundamental set zT~, • • -, ;?,, and nl equals the dimension of the 

space spanned by solutions of type (i) above with nonvanishing determining 

factors. Since the total number of y i : s  with vanishing determining factors is 

p(p), equal to the degree of the indicial equation for p, we get the dimension 

n ~ + 20 ~ ) - dim kere/5 + codim ime,6, 

which by the index theorem (cf. the end of section 1) equals 

n, + 2p(~) -  g(~). 

We collect the conclusions in a theorem. 

T ~ O ~ M  3.1. The operator p (0.1) has a finite-dimensional kernel in 3;'(R ) 
spanned by the distributions (i)-(iv) above. We have 

(3.10) dim ker~,p = n, + 2 p ( p ) -  X(P), 

where n~ is defined above, O and X in section 1. Furthermore the image o[ 'p in 
(R ) is closed and equals the orthogonal space o[ the kernel o[ p in ~ ' (R  ). 

When constructing a basis for the kernel of a given operator, we do not 

generally have to construct the fundamental set y l , ' "  ", y,, for the transposed 

operator. Indeed, by using the dimension statement of Theorem 3.1, Lemma 2.3, 

and the formula (2.13), we get detailed information on the kernel just by 

inspecting the system used in computing formal solutions of py = 0. To compute 

the solutions u of pu = 0 with support at t = 0 we employ (2.13). Hence we have 

to find all t-')7, where )7 E d, y0~0 ,  m >0 ,  and such that ,6(t-"y) has index 
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v => 0. Then the solutions are u = (tl-m~)80. To compute the solutions of type (ii) 

above, we take maximal sequences 

~ = ~ ( y f l ( ( j - k ) ! ) ( l og l t l y  -~, k = 0 , - - - , n  
i=k 

of formal solutions o f / ~  = 0. Then, in particular, we get from (2.19) 

n - k  - t ~  

(3.11) ~ (1/v!)SV(p)f,÷k÷~ = O, ~ = 0 , . . . ,  n - k. 
v = 0  

Now, a simple computation, by aid of (2.21) shows that if pzk = 0 for t ~  0 and 

zk - ~k when t ~ 0 ,  then 

n - k + 1  

(3.12) P(H~zk)= °"  ( ~=1 ~ (I/v!)S~(p)Y~+k-~) ~°" 

If k > 0 ,  we get by putting /.t = 0 and replacing k by k - 1  in (3.11) 

(3.13) pYk-~+ t - ~ 1  (1 /v ! )S~) )~÷k- I  =0 .  

Combining this with (3.12) we see that 

(3.14) H~zk + tr(t~k-~)~o 

is a solution. Hence there only remains to check the last elements from each 

sequence, i.e. we should look for an element )7_1 such that the left member of 

(3.13) with k = 0 has non-negative index. Then (3.14) with k = 0 still defines a 

solution. However,  if no such )7~ exists, then zo only contributes a solution of 

type (iii). We consider a couple of examples. 

EXA~_PLE 3.1. Consider the operator  

p = tkO + a. 

If k > l  and a ~ 0  we have p ( p ) = x ( p ) = 0  and hence d i m k e r ~ , p = n l .  A 

solution of py = 0 is y = exp (at ~-k/(k - 1)). Hence we get the following cases: 

n~ Basis for ker~,p 

Re a = 0 2 H÷ly, H_~y 

R e a > 0 ,  k odd 0 - -  

Re a < 0, k odd 2 H÷~y, H_ly 

Re a ~ 0, k even 1 /-/,,y, where Re a t r <  0. 
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If  k -> 1 and a = 0 we have  p ( p ) =  1, X ( P ) =  1 -  k, and n~ = 0. H e n c e  we get 

d i m k e r ~ , p  = 1 + k. A basis is in this case H-T, H+T, 60,. • -, 6to ~ 2~. If k = 1 and 

a # 0 we get d im ker~,p  = 2. A solution of py = 0 is y = t -". H e n c e  a basis is 

H+ly, H _ f f  unless a is a posi t ive integer,  in which case a basis is f o r m e d  by y, 

(ty),%. 

EXAMPLE 3.2. Consider  the  confluent  hype rgeomet r i c  ope ra to r  

p = tO2+( 'y -  t)d - / 3 .  

The  indicial equa t ion  is 

indp ( a )  = a ( a  - (1 - Y)) = O. 

Since n, = O, p ( p )  = 2, and X(P)  = 1, we get d i m k e r ~ , p  = 3. We  have,  if 37.372 

deno tes  e l ements  in (7, the following types of  solutions of  py = O: 

(a) 3' is no integer  ) 

(b) 3',/3 are integers  and  7 - 1 - < / 3  < 0  ~ yL, t ' - ' y 2  

(c) Y,/3 are integers  and 0 -</3 < 3' - 1 J 

(d) not  (a)-(c), 3' =<1 tt-Vy2, yT+ t l - 'y21ogl t [  

(e) not (a)-(c), 3' > 1 yT, t ' - ' y 2  + y, log It[ 

In case (a) we get immedia te ly  the  distr ibution solut ions yL, H+ztT-'y2 and 

H_~tl-'y2, which by the d imens ion  s t a t ement  also span the kernel .  T h e  same  is 

t rue  in case (b) but  now because  the sum of (3.14) in this case has non-nega t ive  

index. In case (c) we obse rve  that  (t2-'y2)8o is a nontr ivial  solution.  H e n c e  a basis 

is yz, y2, and (t2-'y2)80. For  the two last cases we have  maximal  sequences  as 

discussed above  with two e lements .  Obse rv ing  that  yl has index zero,  we get  the  

basis e l ements  H,,t~-'y2, o- = __+ 1, and yl + t l- 'y21ogl t l for  case (d) and H, ffl  + 

or( tZ- 'y2)8o,  or = + 1 ,  and y2t 1-v + y ~ l o g l t  I for  case (e). 

W e  shall now use the knowledge  of the kerne l  of p in ~ ' ( R )  to const ruct  a 

con t inuous  right inverse for  p. 

THEOREM 3.2. Let fll  be a neighborhood of t = 0 and let fl2 be an open subset 

of R such that 

(i) n,  n n 2 = o ,  
(ii) if D~ N supp u = 0*  for some u E ker~, p then supp u = {0}. 

Then there is a continuous right inverse P7 ~ for p on ~ ' such that for any ~ E 

(iii) supp(id~ - 'p~pT')O C_ ~'~1 ~ ~'~2, 

* supp u denotes the support of the distribution u. 
** id~ denotes the identity operator on ~. 
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(iv) supp(id~ - 'p'pT')qs C f~2 if and only if ~ E ime~/5, where t~ is the Taylor 

expansion of q, at t = O. 

PROOF. Take a basis u, , .  •., u, for ker~,p such that UE+,," " ", U, is a basis for 

the subspace with support at t = 0. By (i) and (ii) it follows that we may take 

functions q,~,...,qs, in 9 such that suppqs s C_I-I, for j = k + 1 , - - - , n  and 

supp ~0i C_ 1-12 for j = 1,- •., k and such that 

(3.15) u,(qsk) = 6,.k, j, k = 1 , . . . ,  n. 

We put as in (3.2) 

, i  < ,) tp:~q~(t)= ~ yj(t zj(s) O ( s ) -  u ~ ( ~ ) ~ ( s  ds, 

when sgn(t) = o'. Then, by Theorem 3.1, 'p21qJ ~ 9 for any 0 E 9 and 'p2"p 

equals the identity operator  on 9.  Furthermore,  the mapping 'p , l  is continuous. 

Indeed this follows either directly by using Lemma 2.1 or by the closed graph 

theorem which is valid in 9 .  A simple computation yields 

(ida - tp 'p : ' )~b = ~,  u.(~)~bv. 
v 

By (3.15) and the definition of the ~j :s (iii) follows at once and we see that 

(3.16) supp ( ~  u~ (qs)~0~) C "2  

if and only if u~(~O) = 0 for v = k + 1,. •., n. Now, uk+l, • • ", u, is by definition a 

basis for the subspace LPp of ker~,p, consisting of elements with support at t = 0. 

There is an obvious identification of 5fp and ker~,/~ such that the condition (3.16) 

is equivalent to the condition that ~ (the Taylor expansion at t = 0 of ~)  belongs 

to the orthogonal space of kere./~ i.e. to im~'/~. This proves (iv) and concludes the 

proof of the theorem. 

It should be observed that one may always choose as the 1~2 of Theorem 3.2 

any neighborhood of the infinity in R which is disjoint with I11. A particular 

consequence is hence that p is surjective on 9 ' ( R ) .  Theorem 3.2 also yields 

information on p as an operator  on ~ = C~(R)  and on ~' .  

THEOREM 3.3. Let the operator p be of type (0.1) and let y l , . . . ,  y,, be a 

fundamental  set for p in ~ such that the corresponding formal fundamental  set 

~,, . . ., ~,, contains a basis [or the space of formal power series solutions of O~ = O. 

Then 
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(i) ker~,p = ker~,p fl {u E ~ ' : supp  u = {0)}, 

(ii) ker~p is spanned by all Hoyj such that ReOyj(t)--->-oo when t---~0, 

trt > O, and by all yj : s such that ~j admits a power series expansion, 

(iii) im~p equals the orthogonal space of ker~,~p, 

(iv) im~,p equals the orthogonal space of ker~ t p. 

PaOOF. (i) is a simple consequence of the fact that y l , ' "  ", y,, are linearly 

independent functions on any nonempty open subset of R. The statement (ii) 

follows from Lemma 2.4. To prove (iii) we construct a right inverse as in 

Theorem 3.2 but with p replaced by 'p. We write 

d~ = PP;'O + (id~ - PP;~)O = pd/, + 02. 

Now let 0 E ~ and be orthogonal to ker,,tp. By (i) and the identification made in 

the proof of Theorem 3.2 it follows that ~ E im~t0. Hence, by (iv) of Theorem 

3.2, supp t~2 C_ f~  for some open set ~2 with positive distance to the origin. But 

then, in solving pd~2 = 02 one may start integrating at t = 0, thus showing that 

0~ E im,p. Hence 0 E im~p and we have proved the nontrivial inclusion of (iii). 

To prove the nontrivial inclusion of (iv) we take a v ~ ~ '  which also belongs to 

the orthogonal space of ker, 'p. The ~2 of Theorem 3.2 may be chosen in such a 

way that the complement of f12 is compact, convex, and contains ~1 U supp v. 

Putting u = pT~v, it follows that pu = v and it only remains to prove that u has 

compact support. Indeed we prove that the support of u is contained in the 

complement of ~2. Let th E ~ with supp ~b Cfl2. Then u(~b)= 1)(tp~-lt~). HOW- 

ever, by (iv) of Theorem 3.2, tpT~b agrees in supp v with an element in ker~*p 

and hence, by assumption, v ('p 7~b) = 0 i.e. u (~b) = 0. Hence supp u is contained 

in the complement of f~z and therefore compact. 

4. Invertibility 

In certain cases the right inverse of Theorem 3.2 is really a twosided inverse. 

THEOREM 4.1. The operator p (0.1) is invertible on 9 '  if and only if 

(i) Re Q ( t ) ~ oo when t --> 0 for any possible determining factor of a solution in 

of py =0, 
and 

(ii) X(P) = 0. 

PROOF. Obviously p is invertible on 9 '  if and only if ker~,p = 0, which by 
(3.10) is equivalent to 

(1) (i) above 
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and 

(2) 2 p ( p ) - x ( p ) =  0. 

However, the condition (i) includes, in particular, the condition that the indicial 

equation is of degree zero i.e. p ( p ) =  0. Hence the theorem is proved. 

There are corresponding statements for the spaces ~' and ~' .  

THEOREM 4.2. The operator p (0.1) is invertible on ~g (~') if and only if 

(i) Re Q (t ) is bounded from below (above) as t ~ 0 for any determining factor 

Q of a solution in ~ of py = O, 

(ii) X (P) = 0, 
(iii) ind,(n)  ~ 0 for any integer n >= 0 ( <= - 1). 

PROOF. Obviously, p is invertible on ~ if and only if 

(a) ker ,  p = {0}, 

(b) im~p = *. 

By (iv) of Theorem 3.3 we may replace (b) by 

(c) ker, , 'p = {0}. 

Further, by (i)-(ii) of Theorem 3.3, (a) and (c) may be replaced by 

(d) (i) above, 

(e) a = dim(ker~.'p fq {u ~ 9 ' :  supp u = {0}}) = 0, 

(f) /3 = dim(ker~/5) = 0. 

However, by the index theorem 

13 - , ~  = X(P)- 

Moreover (f) is clearly equivalent to (iii). Hence the statement follows for ~. 

Essentially the same argument, or else duality, employing (d) of Lemma 1.1, may 

be used for the space ~' .  

It should be noted that an operator which is invertible on 9 '  is also invertible 

on ~ but never on ~". The invertibility is further discussed in some examples. 

EXAMPLE 4.1. The operator (cf. Example 3.1) 

p = t k a + a  

has X ~ )  = 0 unless a = 0 in which case X(P) = 1 - k. The operator is invertible 

on 9 '  if and only if 

k i s o d d ,  k > l ,  and R e a > 0 ,  

it is invertible on ~ if and only if 
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either 

or  

o r  

EXAMPLE 4.2. 

S. L. SVENSSON Israel J. Math. 

k = 1 and a is not an integer < 0 

k i s o d d ,  k > l ,  and R e a > 0 ,  

k i s e v e n ,  k > l ,  R e a = 0 ,  a n d l m a ~ 0 .  

The real operator  

p = t602+ ott30 +/3 

is invertible on 9 '  if and only if 0 < a, 0 </3. Indeed a simple computation shows 

that X(P)=  0 if and only i f / 3 # 0  and that the possible determining factors of 

solutions in ~" of py = 0 are Q = - ct-2/2, where c2+ ac  + ~ = O. 

EXAMPLE 4.3. For the operator  

p = t202+ atO + b, 

we have X(P) = 0 and ind, ( a )  = a ( a  - 1)+ a s  + b. The only possible determin- 

ing factor is O = 0. In particular 

p = t292+4tO + 2  

is invertible on ~ but not on ~' ,  

p = t2O 2 

is invertible on g" but not on ~, and 

p = t202+ 1/4 

is invertible on both ~ and ~'.  

For completeness and for comparison we recall the hypoellipticity theorem by 

Kannai [3]. This theorem could of course easily be proved with the tools that we 

have developed, but the proof would not differ in any essential ideas from that of 

Kannai. The theorem says: The operator  p (0.1) is hypoelliptic if and only if 

I R e O ( t ) l ~  when t---~0, for any determining factor of a solution in ~: of 

py = 0 and apcp)~ O. By hypoellipticity is here meant that any distribution 

solution of pu = ~b E ~ is itself a function in ~'. The conditions for hypoellipticity 

require the classical solutions of py = 0 to be either so nice that they are 
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C~-functions or so bad that they are not even distributions. As has been pointed 

out by Komatsu [4] the situation is quite different in hyperfunction spaces. 

5. Generalizations and concluding remarks 

An obvious generalization is to include dependence upon parameters. Indeed 

the whole theory may be repeated for operators (0.1) in R "÷~ where the 

coefficients depend upon (t, x~, . . . ,  x.), and where the formal solutions may be 

labeled in such a way that they do not change any essential properties nor 

interfere mutually as x~, . . . ,  x, vary. We do not make any digression into what 

the last should mean exactly but only point to the complex case with polar 

coordinates r, th corresponding to t and xi. As is well known the Stokes' 

phenomenon may appear even though the individual formal solutions are well 

behaved. The higher dimensional problem will be treated for first order 

operators in a forthcoming paper [7]. A new feature in higher dimensions is that 

one may lose the property of local solvability. 

Another  case of generalization is that of an operator  (0.1) where the highest 

order coefficient am has an isolated but infinite order  zero at a point. For that 

case we also refer to [7]. 

For the case of more than one singular point we can give a general treatment 

only to operators of first order. The technique applied in the proof of Theorem 

3.1 may then be employed. We do not make any general discussion but only 

consider a couple of examples. 

EXAMPLE 5.1. The operator  

p = cos 2 tO - 1 

is invertible on ~ ' ( R ) .  When t lies in an interval ] ( n -  1/2)~-,(n + 1/2),r[ we 

define for ~b E Co 

exp(tan cr - tan t)cos -2 ~qJ(~)d~. 4 ' ( 0 =  ° 1,2~ 

Integrating by parts we get 

exp(tan cr - tan t)O~(o')d~r. (5.1) qS(t) = ~b(t)- .-1/z~ 

From the last formula it is easily seen, using Lemma 2.2, that qS, properly defined 

at the zeros of cos t, is a Co-function. Moreover,  if I is the smallest interval 

[(k + 1/2)7r, (n + 1/2)~r] which contains the support of ~, then I contains the 
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support  of d~ too. Clearly (5.1) defines a continuous inverse for 'p on 9 (R)  and 

hence p has a continuous inverse on 9 ' .  Moreover,  if v is a distribution with 

compact  support  and p u  = v, then u too has compact  support,  contained in the 

smallest interval [(k + 1/2)zr, n + 1/2)zr] which contains the support  of v. 

EXAMPLE 5.2. The opera tor  

p = t 2 ( t -  1)20 - 2 t  + 1 

is not surjective on 9 ' ( R ) .  Indeed a simple computat ion shows that the 

determining factor Q for a solution y of 'py = 0 in ~ at t = 0 is Q = - 1/t, while 

the corresponding determining factor at the point t = 1 is QI = 1/(t - 1). This 

means that there is a Co-solution th of 'p = 0 and consequently the equation 

pu  = v, where v E 9 ' ( R  ) has a distribution solution only if v is orthogonal  to ~b. 

That  this condition also is sufficient for solvability is easily seen. 

Apar t  f rom the phenomenon that singular operators  might have continuous 

inverses on distribution spaces, there is another  fact which is important  and does 

not seem to have been recognized before and that is a phenomenon of forced 

propagation of support f rom a source. The counterpart  in higher dimensions is a 

forced propagat ion of singularities. 

EXAMPLE 5.3. Consider the opera tor  

p = t20 + 1. 

The kernel of p as an operator  on 9 ' ( R )  is spanned by H_~y, where y = exp 1/t. 

If sgn(a)  = + 1 and 8a is the Dirac measure at a, any solution u of p u  = ~a in 9 '  

is of the form 

u ( t )  = ( c H (  - t)  + H ( t  - a))exp 1/t. 

Hence,  contrary to the "norma l"  cases when one may choose either of the two 

directions of a characteristic (or both) as direction of propagation f rom a source, 

we have in this case no choice but to follow the positive direction from a. 
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